
Stub Testing for Vulnerability Detection in LLM Training

Sara Gomez

ARISE Lab – The Fu Foundation School of Engineering & Applied Science

Introduction

Results Conclusion & Next Steps

My Contact
sara.m.gomez@vanderbilt.edu

4013021176

Scan for LinkedIn:

Null Pointer Dereference,
16%

Resource Management,
14%

Access Control, 16%
Error Handling, 22%

Input Validation, 32%

Common Vulnerabilities in Open-Source Codebases

Stub tests proved effective at identifying and addressing

security vulnerabilities. Provides modality of information –

allowing for dynamic vulnerability tracing during

development.

➢ Experimentally created a test case database to recreate

vulnerabilities by simulating edge cases.

➢ Value proven in using automated test generation to train

LLMs for VD.

➢ PrimeVUL was previously introduced as a dataset for training

and evaluating large language models (LLMs) for vulnerability

detection (VD), but research revealed the considerable gap

between capabilities and practical requirements for

deploying LLMs in security roles.

➢ This project aims to enhance the detection and fixing of

security vulnerabilities in open-source codebases through stub

testing.

➢ By utilizing stub tests to recreate a sample vulnerabilities in

TensorFlow codebase, this project looks to validate fixes and

build a test case codebase.

➢ Hope to underscore the value of automated test generation

for training LLMs for VD via dynamic vulnerability tracing.

Stub Test Method

Create mock classes to simulate objects & their

behaviors

Create mock functions to simulate function

calls & expected results

Develop test cases to create vulnerable scenarios Implement in main function

to execute test cases

Run in isolation to validate

vulnerabilities

Initially, used a sample of 50 confirmed vulnerabilities across

codebases to create a graph of common vulnerabilities.

Utilized the stub test method to recreate 22 vulnerabilities

from TensorFlow. Example of successful vulnerability

recreation shown using same example of validation check

added – shows appropriate error handling & input validation.

Compiled database of testcases of the TensorFlow

sample.

Example shown is a vulnerability caused by lack of input validation on ‘AddManySparseToTensorsMap’ function in TensorFlow.

Test cases written in C++ and

run in isolation VisualStudio

Code. Want to determine if

the vulnerability was

successfully recreated or not.

Test cases with successful

recreations added to database.

Acknowledgements
ARiSE Lab

Prof Baishakhi Ray & Yangrubio

(Robin) Ding

Test cases

with

mismatched

indices and

value sizes.

Test case

with valid

input

Two edge cases tested &

both vulnerabilities caught.

Validation added, function successful.

Focusing on vulnerable functions

Pre-processing to set simulated environment

	Slide 1

