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Common Vulnerabilities in Open-Source Codebases

Stub tests proved effective at identifying and addressing 

security vulnerabilities. Provides modality of  information – 

allowing for dynamic vulnerability tracing during 

development. 

➢ Experimentally created a test case database to recreate 

vulnerabilities by simulating edge cases.

➢ Value proven in using automated test generation to train 

LLMs for VD. 

➢ PrimeVUL was previously introduced as a dataset for training 

and evaluating large language models (LLMs) for vulnerability 

detection (VD), but research revealed the considerable gap 

between capabilities and practical requirements for 

deploying LLMs in security roles. 

➢ This project aims to enhance the detection and fixing of  

security vulnerabilities in open-source codebases through stub 

testing. 

➢ By utilizing stub tests to recreate a sample vulnerabilities in 

TensorFlow codebase, this project looks to validate fixes and 

build a test case codebase.

➢ Hope to underscore the value of  automated test generation 

for training LLMs for VD via dynamic vulnerability tracing.

Stub Test Method 

Create mock classes to simulate objects & their 

behaviors

Create mock functions to simulate function 

calls & expected results

Develop test cases to create vulnerable scenarios Implement in main function 

to execute test cases 

Run in isolation to validate 

vulnerabilities

Initially, used a sample of  50 confirmed vulnerabilities across 

codebases to create a graph of  common vulnerabilities. 

Utilized the stub test method to recreate 22 vulnerabilities 

from TensorFlow. Example of  successful vulnerability 

recreation shown using same example of  validation check 

added – shows appropriate error handling & input validation. 

Compiled database of  testcases of  the TensorFlow 

sample. 

Example shown is a vulnerability caused by lack of input validation on ‘AddManySparseToTensorsMap’ function in TensorFlow. 

Test cases written in C++ and 

run in isolation VisualStudio 

Code. Want to determine if 

the vulnerability was 

successfully recreated or not. 

Test cases with successful 

recreations added to database.
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Test cases 

with 

mismatched 

indices and 

value sizes.

Test case 

with valid 

input

Two edge cases tested & 

both vulnerabilities caught. 

Validation added, function successful.

Focusing on vulnerable functions

Pre-processing to set simulated environment
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