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I. INTRODUCTION

The deployment of 5G wireless networks, while promising
faster communication and greater connectivity, poses a sig-
nificant challenge to the accuracy of weather forecasts due
to potential radiation leakage into frequency bands used by
weather sensors [1]. Two main focuses this summer dealt
with utilizing a mobile 28 GHz IBM Phased Array Antenna
Module (PAAM) to measure the effects of its transmission
on a radiometer (an instrument that senses electromagnetic
radiation in the atmosphere) and attempting to recreate a
neural network capable of accurately predicting atmospheric
data despite the presence of 5G interference. Our aim is to
characterize how the interference affects the radiometer to feed
into other technology we have for spectrum sharing, ultimately
contributing to improved weather forecasting in dense urban
environments.

II. METHODOLOGY

The methodology involved utilizing a radiometer with IBM
PAAMs to conduct measurements on the rooftop of The
City College of New York (CCNY), focusing on 28 GHz
frequencies. Seven months’ worth of datasets from CCNY,
including voltage values (lvl0), brightness values (lvl1), and
atmospheric readings (lvl2), specifically water vapor density
levels, were provided to our lab. Initially, the variables used
in the lvl0 to lvl1 equation were extracted and run to verify
the accuracy of the lvl1 values. Subsequently, the data was
formatted to fit a neural network model schema provided by
the lab in Houston, which only shared the model attributes
due to purchase constraints. A neural network model was
developed, using the provided schema as a baseline. The data
was split into 75% training and 25% testing resulting in about
150 days worth of training data and 50 days worth of testing
data. The input matrices were of dimension 100x26, where the
100 rows corresponded to different time samples and the 26
columns represented various input features derived from the
lvl1 values. The output matrices were of dimension 100x58,
with the 100 rows again representing time samples, and the 58
columns corresponding to different atmospheric readings (lvl2
values) such as water vapor density levels at various elevations.
To extend further from the attributes provided by the Houston
schema, Cross-Validation and the Adam optimizer is used to
determine an optimal amount of epochs and to train our model

respectively - using the pretrained weights and biases as a
starting point.

Fig. 1. lvl0 to lvl2 Function and Model Pipeline

III. LIMITATIONS

As stated in the previous section, the Houston model only
provided model attributes specific to its site. This is significant
because neural network models are often tailored to specific
sites and conditions; thus, the model attributes alone provided
a baseline, but the specific site characteristics and conditions
necessitated adaptations to ensure accurate predictions. The
provided neural network model schema includes 26 input
nodes, 49 hidden nodes, and 58 output nodes. However, only
25 input features are specified, leaving one input variable
undefined. For our study, the last input feature (25th) was
copied to fill the missing 26th input.

IV. RESULTS

The equation for converting lvl0 to lvl1 values yields a Root
Mean Square Error (RMSE) of 0.0089, indicating accurate
predictions of interference effects on lvl1 data. Before recon-
structing the neural network model from Houston, a multi-
output random forest model was used to predict lvl2 values
from lvl1 inputs. This model, tested over 10 days, achieved
a Mean Square Error (MSE) of 0.24, with the top features
being Ch 23.0, Ch 22.5, and Ch 25.0, which aligns with
results from Solheim et al [2]. The Houston neural network
schema, when applied, achieved 84.48% accuracy on a day
with no interference but dropped to 53.76% on a day with
significant interference, highlighting the model’s limitations
and prompting the need to train the weights and biases



specifically for our conditions. Due to the limitation of model
structure information and other ongoing projects at this time
(as discussed in the last section of this paper), the model is
still being developed.

V. CONCLUSION

5G wireless network deployments have been increasing dra-
matically. Though they provide faster communication and
greater connectivity, they pose a significant challenge to the
accuracy of weather forecasts due to potential radiation leak-
age into frequency bands used by weather sensors. This study
focused on two main objectives: utilizing a 28 GHz IBM
PAAM to measure its transmission effects on a radiometer and
attempting to recreate a neural network capable of accurately
predicting atmospheric data despite 5G interference. Given
an incomplete set of input features and suboptimal weights
and biases for local conditions, we had to adjust our own
model version accordingly. The results showed that the model
performs well in the absence of interference but struggles
with significant interference, highlighting the need for model
adjustments. To address these limitations and enhance the
model’s performance, retraining the neural network’s weights
and biases using local data instead of holding the pretrained
weights and biases constant must be tested. This approach
aims to better accommodate the specific atmospheric condi-
tions of New York and improve weather forecasting accuracy
in dense urban environments.

VI. SIDE PROJECTS

One ongoing project I am working on is an application to
control the 28 GHz IBM Phased Array Antenna Modules
(PAAMs), replacing the current script-based method. This
interface was designed to make the complex PAAMs more
accessible and user-friendly for younger audiences and other
researchers - ensuring safe and straightforward operation by
preventing potentially harmful inputs. Another engaging side
project involved measuring radar transmission from the Army
Research Lab (ARL), which recently took place. This project
aimed to evaluate how spectrum management and sharing
might be impacted as transmission activities increase. Under-
standing these effects is important for developing strategies
to optimally manage and share the spectrum, particularly in
dense urban environments like New York City.
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