
Introduction

Federated Reinforcement Learning (FRL) enables 

multiple agents with identical state and action spaces in 

independent and varied environments to collaboratively 

learn an optimal policy. This approach is beneficial in 

scenarios where agent privacy is crucial, such as in energy 

grids or medicine. Using PyTorch, I develop a deep FRL 

framework capable of supporting and ensembling any RL 

algorithm, and enhance two a novel momentum-based 

algorithm, FEDSVRPG-M[1], alongside other state-of-

the-art (SotA) RL algorithms, to train crazyflie drones. 

The novelty in momentum-based algorithms are shown 

with their guaranteed convergence to a stationary point of 

the average performance function, despite environment 

heterogeneity. However, this is under the assumption that 

they are the only local algorithms.

For the other local algorithms, I use Proximal Policy 

Optimization (PPO) [2], Soft Actor-Critic (SAC) [3], and 

Twin-Delayed Deep Deterministic Policy Gradient (TD3) 

[4]. Each of these algorithms have their independent 

strengths. PPO is more of an on-policy algorithm that is 

stable and provides reliable performance but can be 

sample inefficient and sensitive to hyperparameters. SAC 

and TD3 are off-policy algorithms. SAC offers excellent 

exploration and sample efficiency but is computationally 

demanding. TD3 is robust against overestimation bias and 

sample efficient but can be slower to converge. Combined 

with deep learning, my ensemble method aims to 

improve learning by leveraging the strengths of each other 

SotA sub-algorithm without losing too much of the 

convergence benefits of momentum-based FRL. I also 

explore the benefits of aggregation in value function 

estimation to determine if critics benefit from FRL too.

Furthermore, on the simulation side, I modify the gym-

pybullet-drones[5] platform to include domain 

randomizations for wind and mass conditions, enhancing 

sim2real transfer. Using this FRL platform, I train 

crazyflie drones for various tasks and plan to incorporate 

layer freezing and LQR-based supervised learning for 

subtasks like hovering to advance robot learning.
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Conclusion: Due to time constraints, I had to limit total local iterations to 180. However, I believe it takes 

significantly more iterations in RL to obtain dependable results, especially when combining ensembling with 

deep learning. This would also explain why the critic aggregation performed significantly worse, and why 

every local iteration seemed to only worsen performance after a global update for some algorithms.

Although only a basic hover task in the presence of wind was displayed through this project, the domain 

randomization and deep ensembled FRL platform provides for a lot of customizability, which shows potential 

for more complex tasks in different continuous environments. Furthermore, compatibility with physics 

simulators such as PyBullet and OpenAI Gymnasium environments [9] allows this platform to be widely open-

sourced and serve as a baseline for federated or ensembled RL in further studies. Future work could include 

fine-tuning hyperparameters for each of the algorithms and for the actor/critic networks, employing more 

sophisticated statistical methods to match algorithm choice to heterogenous environments, and a sim2real 

transfer on real-life Crazyflie 2.1 drones in different environments.

With this project I aim to answer 2 key questions and 

explore their consequential degrees of freedom for 

optimization:

1) Does implementing a federated reinforcement 

learning framework ensembling existing state-of-

the-art algorithms with momentum-based 

algorithms provide any benefit over their respective 

vanilla versions?

2) How does environmental heterogeneity combined 

with domain randomization aid in more robust 

learning of chaotic dynamics in physical systems?

General Workflow:

Network Architectures

Actor Network: Diagonal Gaussian MLP

Critic Networks: Value Function Estimation

Federated RL Algorithm

Classic (REINFORCE)
Momentum-Based 

(FEDSVRPG-M)

FRL Server Aggregation Step:

Policy Gradient Estimates:

Standard Ensembled (weighted by reward)

LOCAL ITERATIONS k (for each agent i)

Initialize local policy θr,k to be identical to global policy θr

Objective Functions:

PPO
SAC

TD3

Run local optimization step k = 1,2, …, K

Send policy displacements: Δr = θr,K - θr

GLOBAL SERVER STEP r

Evaluate all agents i and obtain mean rewards ρi

Update global policy θr+1 = θr + λur+1

Repeat from top r = r + 1, k = 0 until r = R

Notes:

1. For algorithms which use target networks (SAC & TD3), I consider the non-target network 

during global updates and reinitialize them to be identical to the new global policy after

2. Policies which use state-action Q-functions have action parameters weighted separately outside 

of the gradient step and reinitialized as the average at the start of a new global iteration

Simulation Design

State space: Action space:

Wind Disturbances: Mass Randomization:

Reward Model:
For the task of hovering in the presence 

of wind, the reward is determined by the 

Euclidean distance from a target 

position. The episode terminates and 

reward is set to 0 if the drone flips, 

determined by its roll and pitch.

A rendering of the gym-pybullet-drones simulator [5]
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Hyperparameters:

Global:

• Global Update Frequency: 10

• Total local iterations: 180

• Maximum Episode Length: 2048

• Global Learning Rate: 0.001

• Total Agents: 4

FedSVRPG-M:

• β = 0.2
• η=0.001

Stable_baslines3 Algorithms:

• Default

Results: The federated algorithm without critic network aggregation 

generally performed significantly better. It consistently 

outperformed the aggregated version for algorithms using double Q-

Networks (SAC & TD3), though it showed a slower start for PPO. 

Additionally, SAC and TD3 exhibited a spike in performance with 

each global update, indicating potential benefits of ensembling. The 

momentum-based algorithm performed the worst overall but showed 

less pronounced effects from global updates compared to the other 

algorithms.
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