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1. INTRODUCTION AND BACKGROUND

Federated Reinforcement Learning (FRL) enables multiple
agents with identical state and action spaces in independent
and varied environments to collaboratively learn an optimal
policy. This approach is beneficial in scenarios where agent
privacy is crucial, such as in energy grids or medicine. Us-
ing PyTorch, I develop a deep FRL framework capable of
supporting and ensembling any RL algorithm, and enhance
two novel momentum-based algorithms, FEDSVRPG-M and
FEDHAPG-M[1], alongside other state-of-the-art (SotA) RL
algorithms, to train crazyflie drones. The novelty in these
momentum-based algorithms are shown with their guaranteed
convergence to a stationary point of the average performance
function, despite environment heterogeneity. However, this is
under the assumption that they are the only local algorithms.

For the other local algorithms, I use Proximal Policy Op-
timization (PPO) [2], Soft Actor-Critic (SAC) [3], and Twin-
Delayed Deep Deterministic Policy Gradient (TD3) [4]. Each
of these algorithms have their independent strengths. PPO is
more of an on-policy algorithm that is stable and provides re-
liable performance but can be sample inefficient and sensitive
to hyperparameters. SAC and TD3 are off-policy algorithms.
SAC offers excellent exploration and sample efficiency but is
computationally demanding. TD3 is robust against overes-
timation bias and sample efficient but can be slower to con-
verge. Combined with deep learning, my ensemble method
aims to speed up learning by leveraging the strengths of each
other SotA sub-algorithm without losing too much of the con-
vergence benefits of momentum-based FRL. I also explore the
benefits of aggregation in value function estimation to deter-
mine if critics benefit from FRL too.

Furthermore, on the simulation side, I modify the gym-
pybullet-drones[5] platform to include domain randomiza-
tions for wind and mass conditions, enhancing sim2real
transfer. Using this FRL platform, I train crazyflie drones
for various tasks and plan to incorporate layer freezing and
LQR-based supervised learning for subtasks like hovering to
advance robot learning..

1https://github.com/KevinHan1209/FederatedRL.git

2. METHODS

2.1. Software

To implement FRL, I create a universal server class that it-
erates through each agent’s local environment and training
process, using the process outlined in Section 2.2. I imple-
ment FEDSVRPG-M as a separate class, and utilize gradient
norm clipping and adaptive learning rates to address problems
exploding gradients. For other local algorithms, I adapted sta-
ble baselines3[6], a heavily used package for baselining RL
algorithms in the literature which employs SotA techniques
for optimization. To ensure universal compatibility, I process
policy parameters to PyTorch tensors during global optimiza-
tion steps, and then back to their respective policy classes af-
ter.

Fig. 1. High level workflow of FRL platform.

2.2. Algorithm

Due to time constraints, I could only implement FEDSVRPG-
M. For each agent, at each local iteration k for each global
round r, this algorithm uses a momentum-based variance-



reduced stochastic policy-gradient estimator:

ur,k =βg(τr,k|θr,k) + (1− β)[ur + g(τr,k|θr,k)−
w(τr,k|θr−1, θr,k)g(τr,k|θr−1)],

(1)

where β ∈ [0, 1] is the momentum parameter, θ are the pol-
icy parameters, τ represents the agent trajectory through the
state and action spaces, g(τ |θ) is the standard policy gradi-
ent estimator used in classic policy gradient methods such as
REINFORCE[7], and w is the importance sampling weight
defined by

w(τr,k|θr−1, θr,k) =
p(τr,k|θr−1)

p(τr,k|θr,k)
, (2)

where p is the probability of the trajectory assuming states
and actions are independently distributed. The objectives and
updates for PPO, SAC, and TD3 are not mentioned here for
brevity, but the specific implementations can be found in my
github link1 and in their respective documentations within
stable baselines3 [6].

After each local iteration in FEDSVRPG-M and all other
algorithms, each latest local policy parameters θr,K is sent to
the server and after post-processing, the policy displacement
∆r = θr,K − θr is calculated for the actor networks and, if
applicable, the critic networks. The latest local policies are
also evaluated for all agents and mean episode rewards ρ are
determined. The global ensembled gradient is then calculated
as follows:

ur+1 =
1

ηNK
∑N

i=1 ρi

N∑
i=1

ρi∆
(i)
r , (3)

where η is the local step size and N is the total number of
agents. This gradient update is calculated for both the actor
and available critic networks. If the critic network represents
a state-action value function rather than a state action, such
as in SAC and TD3, the new action parameters are just calcu-
lated as a weighted average rather than a gradient update. The
gradient updates are then implemented as

θr+1 = θr + λur+1, (4)

where λ is the global step size. All algorithm models then
have θr+1 initialized as their policy before starting the next
global iteration.

Algorithms which use Polyak averaging between two ac-
tor or critic networks where one is serves as the target network
has the other considered as the main network this process, and
the target networks are initialized to be identical as the new
global network at the start of each new global round.

2.3. Drone Simulation

Quadrotor drones operate in a continuous environment, with
state spaces S of dimension 27 comprising of positions x =

[x, y, z], quaternions q, rolls r, pitches p, yaws y, linear ve-
locities ẋ, angular velocities ω, and motor speeds P:

S ∋ {x,q, r, p, y, ẋ, ω,P}. (5)

The action spaces A are 4-dimensional, comprising of the 4
RPM inputs to the motors P.

Inspired by TornadoDrone[8], I enhance the gym-pybullet-
drones simulation with domain randomizations in a proba-
bilistic setting. For each episode, there is a 50% chance that
domain randomization will be applied where the mass is ran-
domized up to 15 grams more than the default of 27 grams.
In each domain randomization episode, there is also a 30%
chance that a wind force up to 0.005 Newtons in any direction
would be applied. I also incorporate nonlinear aerodynamic
effects such as drag and ground effects. These modifications
improve the robustness of sim-to-real transfer by enabling
the model to learn chaotic effects more effectively, and, com-
bined with deep learning, serve to prepare the model for more
complex tasks.

Fig. 2. The rendering of gym-pybullet-drones simulation[5].

2.4. Deep Learning

I develop a diagonal Gaussian policy network with hyperbolic
tangent activation, featuring 4 hidden linear layers (512, 512,
256, 128 units) and standard deviation layers, shared among
all agents.



Fig. 3. Actor network architecture. Note that activation func-
tions are utilized between every hidden layer as well.

Actor-critic algorithms utilize a separate critic network
with ReLU activation and 2 hidden layers of 32 units each.

Fig. 4. Critic network architecture. Note that activation func-
tions are utilized between every hidden layer as well.

3. RESULTS

Due to time constraints and switching labs 4 weeks into the
program, I unfortunately am not able to complete training
and obtain results before the deadline of this abstract. How-
ever, I have established all of the necessary software, which
was one of my target accomplishments. I have developed a
universal platform to conduct ensembled and/or federated re-
inforcement learning with custom algorithms or algorithms

from stable baselines3 [6], and are compatible with environ-
ments from OpenAI gymnasium [9].

I will have results and comparisons of all of the aforemen-
tioned algorithms and their federated and ensembled versions
by the time of the poster presentation.
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