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• PyTorch is a renowned open-source machine learning (ML) 
framework used for developing deep learning models1.

• Benchmark suites are collections of tests used to evaluate 
the performance of applications and systems on specific 
tasks. Many ML benchmark suites exist, with some of the 
most renowned being MLPerf2, SPEC CPU20173, and 
TorchBench4. Communities such as HuggingFace5 also 
contribute to ML research.

• Kernel fusion combines consecutive operators into a single 
kernel (operation)  improving efficiency by minimizing 
memory access overhead and enhancing computational 
performance6. 
• There are two types of kernel fusion: tensor + element 

kernel fusion and tensor + element+ tensor kernel 
fusion6.
• Tensor: data structure similar to an array or matrix
• Element: Individual data 

• Tensor + Element kernel fusion involves fusing a tensor 
operation with a more computation-intensive layer such 
as convolution or attention layers with a memory-bound 
element operation such as the rectified linear unit(ReLU) 
or batch normalization. One example is Convolution + 
ReLU fusion6. 

• Tensor + Element + Tensor kernel fusion involves fusing 
consecutive tensor operations, with potential 
intermediate element operations. One example is 
Convolution + ReLU + Convolution6. 

• Despite the prevalence of ML benchmarks suites, to our 
knowledge, no current suite evaluating kernel fusion 
currently exists.

• Analysis of reasons behind the observed discrepancies is 
crucial to finding areas for optimization within the 
TorchInductor compiler and developing a new compiler 
strategy for ML kernel fusion automation.

• To achieve this goal, further evaluation of the way each 
model is compiled is required. Since speedups were 
expected for all models, evaluating what differences 
occurred with each model’s compilation will provide 
insight into what compiler optimizations led to slowdowns 
instead. 

• Analyzing the memory usage of each model’s inference 
before and after each model is compiled is also an area for 
future observation, as kernel fusion optimization should 
decrease memory usage.

• Expanding the benchmark suite to include a larger and 
more diverse group of models will also be a priority. The 
inclusion of more benchmarks will provide further insight 
into current observations and potentially provide new ones 
as well. 
• Including natural language processors (NLPs)7 and 

speech recognition8 models will provide insight into 
other types of kernel fusion performed by 
TorchInductor.

Choose baseline models  
for the benchmark suite.

Goal: Develop a benchmark suite to study the 
effectiveness of kernel fusion in improving 
performance of various ML workloads. 

Choose meaningful 
image  inputs for each 

model.

Compile each model 
using TorchInductor, 

PyTorch’s built-in 
compiler.

Gain evaluation metrics 
by profiling each model 
before and after fusion 

optimization.

Analyze profiler output 
to gain insight on 

different metrics for 
kernel fusion.
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Kernel fusion optimizations lower execution times for some models,
 while increasing them for others..

As shown, kernel fusion optimizations performed by the compiler 
led to lower execution times for some models and increased times 

for others, a contrast to expected speedups for all models.

The number of fusions per model varied within the range of 8-101, serving 
as an example of how the fused output kernels from the compiler depend 

on the model architecture. Models with lower fusion counts had less 
layers than those with higher fusion counts. The number of fusions also 

depends on the types of kernels present, which differ for different types of 
vision models.

Unfused Kernels Fused Kernel

Layer 1 = Convolution(x)

Layer 2 = ReLU(x)

Layer 3 = Maxpool2D(x)

Fused Layer = 
Convolution_ReLU_Maxpool2D(x)

Kernel fusion combines consecutive model 
layers into a single kernel, reducing global 

memory accesses between kernels6.

Where x is a tensor that the input 
image has been converted to.


