
FusionBench: Analyzing Kernel Fusion in
Vision Models

Kamaula Rowe1, Angélica Aparecida Moreira2, Tanvir Ahmed Khan3
1Princeton University, 2Microsoft Research, 3Columbia University

Background

Methodology

Next Steps

References

• PyTorch is a renowned open-source machine learning (ML)
framework used for developing deep learning models1.

• Benchmark suites are collections of tests used to evaluate
the performance of applications and systems on specific
tasks. Many ML benchmark suites exist, with some of the
most renowned being MLPerf2, SPEC CPU20173, and
TorchBench4. Communities such as HuggingFace5 also
contribute to ML research.

• Kernel fusion combines consecutive operators into a single
kernel (operation) improving efficiency by minimizing
memory access overhead and enhancing computational
performance6.
• There are two types of kernel fusion: tensor + element

kernel fusion and tensor + element+ tensor kernel
fusion6.
• Tensor: data structure similar to an array or matrix
• Element: Individual data

• Tensor + Element kernel fusion involves fusing a tensor
operation with a more computation-intensive layer such
as convolution or attention layers with a memory-bound
element operation such as the rectified linear unit(ReLU)
or batch normalization. One example is Convolution +
ReLU fusion6.

• Tensor + Element + Tensor kernel fusion involves fusing
consecutive tensor operations, with potential
intermediate element operations. One example is
Convolution + ReLU + Convolution6.

• Despite the prevalence of ML benchmarks suites, to our
knowledge, no current suite evaluating kernel fusion
currently exists.

• Analysis of reasons behind the observed discrepancies is
crucial to finding areas for optimization within the
TorchInductor compiler and developing a new compiler
strategy for ML kernel fusion automation.

• To achieve this goal, further evaluation of the way each
model is compiled is required. Since speedups were
expected for all models, evaluating what differences
occurred with each model’s compilation will provide
insight into what compiler optimizations led to slowdowns
instead.

• Analyzing the memory usage of each model’s inference
before and after each model is compiled is also an area for
future observation, as kernel fusion optimization should
decrease memory usage.

• Expanding the benchmark suite to include a larger and
more diverse group of models will also be a priority. The
inclusion of more benchmarks will provide further insight
into current observations and potentially provide new ones
as well.
• Including natural language processors (NLPs)7 and

speech recognition8 models will provide insight into
other types of kernel fusion performed by
TorchInductor.

Choose baseline models
for the benchmark suite.

Goal: Develop a benchmark suite to study the
effectiveness of kernel fusion in improving
performance of various ML workloads.

Choose meaningful
image inputs for each

model.

Compile each model
using TorchInductor,

PyTorch’s built-in
compiler.

Gain evaluation metrics
by profiling each model
before and after fusion

optimization.

Analyze profiler output
to gain insight on

different metrics for
kernel fusion.

1. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., ... & Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. Advances in
neural information processing systems, 32.

2. V. J. Reddi et al., "MLPerf Inference Benchmark," 2020
ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), Valencia, Spain, 2020, pp.
446-459, doi: 10.1109/ISCA45697.2020.00045.

3. Bucek, J., Lange, K. D., & v. Kistowski, J. (2018, April).
SPEC CPU2017: Next-generation compute benchmark. In
Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering (pp. 41-42).

4. Hao, Y., Zhao, X., Bao, B., Berard, D., Constable, W., Aziz,
A., & Liu, X. (2023). Torchbench: Benchmarking pytorch with
high api surface coverage. arXiv preprint arXiv:2304.14226.

5. Jain, S.M. (2022). Hugging Face. In: Introduction to
Transformers for NLP. Apress, Berkeley, CA.

6. W. Sun, A. Li, S. Stuijk and H. Corporaal, "How much can
we gain from Tensor Kernel Fusion on GPUs?," in IEEE
Access, doi: 10.1109/ACCESS.2024.3411473.

7. Liddy, E. D. (2001). Natural language processing.

8. L. Deng and X. Li, "Machine Learning Paradigms for
Speech Recognition: An Overview," in IEEE Transactions on
Audio, Speech, and Language Processing, vol. 21, no. 5, pp.
1060-1089, May 2013, doi: 10.1109/TASL.2013.2244083.

Kernel fusion optimizations lower execution times for some models,
 while increasing them for others..

As shown, kernel fusion optimizations performed by the compiler
led to lower execution times for some models and increased times

for others, a contrast to expected speedups for all models.

The number of fusions per model varied within the range of 8-101, serving
as an example of how the fused output kernels from the compiler depend

on the model architecture. Models with lower fusion counts had less
layers than those with higher fusion counts. The number of fusions also

depends on the types of kernels present, which differ for different types of
vision models.

Unfused Kernels Fused Kernel

Layer 1 = Convolution(x)

Layer 2 = ReLU(x)

Layer 3 = Maxpool2D(x)

Fused Layer =
Convolution_ReLU_Maxpool2D(x)

Kernel fusion combines consecutive model
layers into a single kernel, reducing global

memory accesses between kernels6.

Where x is a tensor that the input
image has been converted to.

