

Recrystallization Cycling and Quenching Study for the Synthesis and Characterization of Transition-Metal Dichalcogenides

<u>Annie Jaswal¹, Luke N. Holtzman², Katherine Lee², Matthew Patrick², Kaikui Xu³, Matthew R. Rosenberger³, James C. Hone⁴, and Katayun Barmak²</u> ¹Department of Physics and Astronomy, Colby College, Waterville, Maine 04901, ²Department of Applied Mathematics, Columbia University, New York, NY 10027, ³Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, ⁴Department of Mechanical Engineering, Columbia University, New York, NY 10027

Background

Two-dimensional transitionmetal dichalcogenides (TMDs) of the form MX₂ have unique optoelectronic properties when exfoliated down to molecular monolayers.

Figure 2. Monolayer WSe₂.

Objectives:

Figure 1. Top (left) and side (right) views of the atomic structure of WSe_2^5 .

A two-step flux synthesis process reduces point defects in TMDs relative to standard methods, but results in small crystals with some defects still present.

- Recrystallization cycling process to further reduce point defect densities and produce larger crystals
- Investigate crystal growth dynamics via quenching and backlight imaging to maximize the efficiency of the synthesis process.

Figure 3. Two-step flux synthesis process.

- Monolayers are exfoliated and transferred for scanning transmission electron microscopy (STEM) imaging
- Crystals are characterized using x-ray diffraction, Raman spectroscopy, and conductive atomic force microscopy (cAFM)

Methods

- WSe₂ and MoSe₂ are synthesized using a twostep flux synthesis method as shown in Figure 3
- Additional Se is added and steps are repeated for recrystallization cycling

Figure 4. Isopropyl alcohol method for transferring monolayer to TEM grid.

References: [1] Mak, K.F. *et al., Phys. Rev. Lett.*, **105** (13), 138605 (2010). [2] Rhodes, D. *et al., Nat. Mater.,* **18**, 541-549 (2019).

[3] Liu, S. *et al., ACS Nano*, **17** (17), 16587–16596 (2023). [4] Li, Y. et al., Mater. Res. Express, 9, 12201 (2022).

[5] Han, D. et al. Chemical Trend of Transition-Metal Doping in WSe₂. https://www.osti.gov/servlets/purl/1564195

Colby

