
Project Description

• Quantum cloud computing provides on-demand access to quantum computers, utilizing Noisy
Intermediate-Scale Quantum (NISQ) devices. Despite the high demand and limited availability of
quantum computers, the current software infrastructure is primitive, leading to inefficiencies and long
wait times. Quantum programs are processed one at a time, with most programs utilizing only a
fraction of available qubit.

Qubits

Qubits, or quantum bits, are the fundamental units of information in quantum computing, capable of
representing and processing data as both 0 and 1 simultaneously due to the principles of superposition and
entanglement.

Problems
• Inefficient Resource Utilization: Quantum programs are run sequentially on quantum computers,

causing underutilization since most programs use only a small fraction of the available qubits.
• High Latency: Due to high demand and the limited availability of quantum computers, users often

experience long wait times for their quantum programs to be processed and results returned.
• Primitive Software Infrastructure: Unlike classical cloud computing, which leverages virtual machines

(VMs) for efficient multi-tenant resource utilization, quantum cloud computing lacks such advanced
virtualization infrastructure. The current system processes quantum programs one by one without the
capability to run multiple programs simultaneously, leading to inefficiencies.

Motivations

• Improve Resource Utilization: By introducing virtualization, multiple quantum programs can run
simultaneously on the same quantum computer, utilizing more of the available qubits and resources
efficiently.

• Reduce Latency: Allowing multiple quantum programs to run concurrently can significantly decrease
the wait times for users to get their results.

• Enhance Software Infrastructure: Virtualization can provide isolation between programs, ensuring
that simultaneous execution does not lead to interference or reduced fidelity in results.

Evaluation of qVM Virtual Machines

To evaluate the effectiveness of HyperQ, various performance metrics were assessed from both the cloud
provider's and the user's perspectives. The evaluation focused on improvements in throughput, utilization,
and latency when using HyperQ compared to the baseline IBM Quantum Platform.

Throughput
Throughput was quantified by obtaining the actual runtime for each job on the quantum hardware, as
reported by the IBM platform. The total runtime for each configuration was summed, and throughput was
calculated by dividing the number of programs executed by the total runtime.

Throughput Results:
HyperQ significantly outperformed the baseline IBM Quantum Platform, showing an improvement factor of
up to six times for the small-only benchmark and more than three times for the small & med benchmark

Utilization
Utilization was defined as active qubit second / total qubit second. An approximation was made by
assuming that all qubits used by a program are active for the entire duration of the program's runtime on
the quantum hardware.

Utilization Results:
HyperQ achieved nearly seven times better utilization for the small-only benchmark and five times for the
small & med benchmark, demonstrating its ability to pack more qVMs together efficiently.

Latency
Latency included the time taken for program compilation, submission to the cloud service, queue waiting
time, and execution time. With HyperQ, additional scheduling and aggregation steps were considered. A
conservative measure of queue waiting time assumed an initially empty queue.

Latency Results:
HyperQ reduced average latency by up to six times by decreasing queue waiting times and optimizing the
scheduling process. This significant reduction was primarily due to faster consumption of program
workloads by running them simultaneously.

Conclusion

HyperQ is a pioneering system that introduces Quantum Virtual Machines to enhance resource utilization
and reduce latency in quantum cloud computing. By leveraging the repeating qubit regions of quantum
machines, HyperQ defines qVMs using an architecture-specific quantum instruction set and virtual qubit
topology. This allows quantum programs to be compiled for specific-sized virtual machines and then
binpacked together for simultaneous execution on real hardware, without runtime virtualization overhead.

HyperQ Design

qVM (Quantum Virtual Machine): is a virtualized abstraction of quantum hardware that allows multiple
quantum programs to run concurrently on a single physical quantum processor. It mimics the architecture
and gate sets of the underlying quantum hardware.

Architecture

• Qubit Partitioning: Divide the physical qubits of a quantum processor into smaller subsets, each
allocated to a different qVM. This allows multiple qVMs to run simultaneously on different qubit subsets.

• Dynamic Allocation: Adjust the number of qubits allocated to each qVM based on the program’s
requirements and the current load on the quantum processor.

Scheduling Algorithms

• Space Scheduling: Allocate qVMs to non-overlapping sets of qubits, enabling parallel execution of
multiple qVMs.

• Time Scheduling: Schedule multiple qVMs to run sequentially on the same qubits, optimizing the use
of idle qubits and reducing latency.

Aaron Bordeaux1, Jason Nieh2, Runzhou Tao2, Hongzheng Zhu2

1Princeton University, 2Columbia University

HyperQ - Virtual Machines for Quantum Computers

Background + Motivation Evaluation + Results + Conclusion Design

A1

B1

H
C1

H
D1

A

B

C

D
1

0

2 3

4 5 6

7 8 9

. +

HyperQ workflow

IBM 127-qubit Eagle machine qVm Basic Unit Mapping Grid

qVM Horizontal Connection qVM Vertical Connection

2 1 9

VM connection coupling map for scaled qVMs

1

5

3

7

22 1 9

Dilution
Refrigerator

Qubits

Classical Computer

1

0

2 3
4 5 6
7 8 9

. +

High Latency

0

1

0

1

Classical Bit

On (1) Or Off (0)

Qubit

Superposition

Space

scheduling scheduling

Time

Execution

IBM Quantum

