Water + Sanitation for the poor: harder than cell phones

Role of low-cost smart meters

Vijay Modi

modi@columbia.edu
WATER SOURCES ARE DIVERSE
Groundwater (Potou - Senegal)

Spring Protection (Ruhiira-Uganda)

Sub-soil storage, Koraro, Ethiopia
No maintenance then systems not reliable
No reliability \rightarrow customers stop paying, even lower reliability

Poor willing to pay for reliability, transparent transactions
Pay for amount that is used. Governments can pay for “lifeline” consumption

LAST-MILE KEY TO SUSTAINABILITY
A public tap staffed 2 hrs/day; users pay 2 KSh/20L jerrycan; goes to pay staff, fuel, maintenance
A network of pipes distributes safe water to 25,000 people spread over 400 sqkm.
Mayange, Rwanda
Water collection in Methare- Kenya

This kiosk supplies 300 daily customers with 20-50 liters of water each

Customers pay the kiosk attendant but transactions are not monitored

A flat rate of 7 KES/20 L is paid regardless of container size - 3.5 times more than other residents of Nairobi
Water kiosks designs

Water kiosks are used in communities around the world
Elements of a smart meter

- Flowmeter
- Vertical standpipe
- Spigot
- Water inlet
- Latching solenoid valve
- Flow
Design Challenge: Water Valve

- **Challenge**
 - Low cost flow meters exist but *low-cost potable remotely actuated valve* does not exist

- **Requirements:**
 - Low Cost (at scale < $6)
 - Potable (current designs are not)
 - Electrically Actuated
 - Low-power (20K actuations with 9V x 560mAh)
 - Low Pressure (less than 10 psi)
 - Low Flow (0.1 to 10 GPM)
Overall Market

• Billions pay ~$2/month for water
• 5 years → $125
• $25 → for “metering and payment systems”
• Payment system down to $5/customer
• Key cost elements: meter + valve + electronics
• Currently: latching solenoid valves are made for the automatic sprinkler market
Test Apparatus

Water Storage Tank

Flow Control Assembly

Integrated PCB
Design Challenge: Water Valve

- **Low Cost**
 - Sub $25/unit retail price point in production quantities (> 1000 units).

- **Potable**
 - Applications include drinking water kiosks
 - NSF/ANSI 61 certifiable materials*

* National Sanitation Foundation
Design Challenge: Water Valve

- Low Pressure
 - Typical water kiosks are locally gravity fed tanks
Design Challenge: Water Valve

- Low Pressure
 - Regional water towers

- Operating Pressure
 - 0-10 psi
Design Challenge: Water Valve

• Electrically (remotely) Actuated
 • Capable of being actuated from microprocessors
 • 12-24V DC

• Low Flow
 • 0-10 GPM

• Piping
 • ~1/2-3/4” NPT
Design Challenge: Water Valve

• Unit Volume
 • ~ 6 x 6 x 6” Envelope

• **Operating Specifications**
 • 0-10 psi

• Temperature Range
 • 0°-150°F

• Desired power consumption
 • Desired power consumption to be 5000+ actuations per standard 9V (560mAh) battery

• Life Cycle
 • 100,000 per unit
Design Challenge: Water Valve

• Low Power Consumption
 • Valve needs to be powered from typical, stand-alone, low cost PV-Battery source for long periods of time.
 • Example: http://www.voltaicsystems.com/3-5-watt-kit