EXPLORING COLUMBIA ENGINEERING MAJORS
LETTER FROM THE DEAN

Today, Engineering is in a period of great research, great creativity and invention, great innovation, and incredible translation of these innovations to solutions that have global impact—indeed, we are in a real Renaissance, one that embraces the possibilities and promise of interdisciplinary discoveries. Here at Columbia Engineering, you have many diverse academic avenues to explore and we encourage you to do so early on.

When you first applied to the School, you may have had an idea of some of the many career options that an engineering or applied science education provides. Some of you may even have had a specific major in mind.

This booklet provides a framework for conversations with your academic and departmental advisors, who can guide you in discussions about what specific areas of engineering or applied science most appeal to you and your aspirations for the future. After looking through its pages, you may find that it reinforces a decision you were sure of before you arrived on campus. Or, it may provide you with exciting new options to consider—paths of academic exploration that you now realize are of increasing interest to you.

We hope the booklet will help you focus on the field, or fields, to which you are drawn. We also hope it will give you an understanding of other engineering and applied science disciplines that might provide an additional dimension to your Columbia education.

Each department and program is listed, possible career paths that the discipline provides, a description of the subject matter studied, and links to resources for research opportunities and additional information.

I encourage you to take advantage of the information contained here and to keep it bookmarked for future reference.

With best wishes for charting your future at Columbia Engineering,

Mary C. Boyce
Dean of Engineering
Morris A. and Alma Schapiro Professor
## COLUMBIA ENGINEERING DEPARTMENTS & MAJORS

<table>
<thead>
<tr>
<th>Department/Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIED PHYSICS AND MATHEMATICS</td>
<td>2</td>
</tr>
<tr>
<td> APPLIED MATHEMATICS</td>
<td>2</td>
</tr>
<tr>
<td> APPLIED PHYSICS</td>
<td>3</td>
</tr>
<tr>
<td> MATERIALS SCIENCE &amp; ENGINEERING</td>
<td>4</td>
</tr>
<tr>
<td>BIOMEDICAL ENGINEERING</td>
<td>5</td>
</tr>
<tr>
<td>CHEMICAL ENGINEERING</td>
<td>6</td>
</tr>
<tr>
<td>CIVIL ENGINEERING</td>
<td>7</td>
</tr>
<tr>
<td> CIVIL ENGINEERING</td>
<td>7</td>
</tr>
<tr>
<td> ENGINEERING MECHANICS</td>
<td>7</td>
</tr>
<tr>
<td>COMPUTER SCIENCE</td>
<td>8</td>
</tr>
<tr>
<td>COMPUTER SCIENCE &amp; ELECTRICAL ENGINEERING</td>
<td>9</td>
</tr>
<tr>
<td> COMPUTER ENGINEERING</td>
<td>9</td>
</tr>
<tr>
<td>EARTH &amp; ENVIRONMENTAL ENGINEERING</td>
<td>10</td>
</tr>
<tr>
<td>ELECTRICAL ENGINEERING</td>
<td>11</td>
</tr>
<tr>
<td>INDUSTRIAL ENGINEERING &amp; OPERATIONS RESEARCH</td>
<td>12</td>
</tr>
<tr>
<td> INDUSTRIAL ENGINEERING</td>
<td>12</td>
</tr>
<tr>
<td> OPERATIONS RESEARCH</td>
<td>13</td>
</tr>
<tr>
<td> OR: ENGINEERING MANAGEMENT SYSTEMS</td>
<td>14</td>
</tr>
<tr>
<td> OR: FINANCIAL ENGINEERING</td>
<td>15</td>
</tr>
<tr>
<td>MECHANICAL ENGINEERING</td>
<td>16</td>
</tr>
</tbody>
</table>
POSSIBLE CAREERS
Graduate and professional schools, risk management, consulting, government agencies, technical, manufacturing, and financial industries.

DESCRIPTION OF DISCIPLINE
Applied mathematics deals with the use of mathematical concepts and techniques in various fields of science, technology, and engineering. The applied mathematician is interested in problems coming from other fields, in the formulation and solutions of these problems, and in the interpretation of the results. Their work frequently overlaps with that of other scientists and engineers.


RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.siam.org
http://www.ams.org
http://www.careereducation.columbia.edu/resources/industry/engg/appm
DEPARTMENT | APPLIED PHYSICS AND MATHEMATICS

MAJOR | APPLIED PHYSICS

WWW.APAM.COLUMBIA.EDU

POSSIBLE CAREERS
Graduate and professional schools, risk management, consulting, government agencies, technical, manufacturing, and financial industries.

DESCRIPTION OF DISCIPLINE
The applied physics program stresses the basic physics that underlies most developments in technology and engineering and the mathematical tools that are important to both physicists and engineers. Since the advances in most branches of technology lead to rapid changes in state-of-the-art techniques, the applied physics program provides the student with a broad base of fundamental science and mathematics while retaining the opportunity for specialization through technical electives.

Research areas include fusion and space plasma physics, optical and laser physics, condensed matter physics, and nanophysics.

http://bulletin.engineering.columbia.edu/undergraduate-programs-applied-physics

RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.aps.org
http://www.aip.org
http://apl.aip.org/
http://www.careereducation.columbia.edu/resources/industry/engg/appp
POSSIBLE CAREERS
Graduate and professional schools, risk management, consulting, government agencies, technical, manufacturing, and financial industries.

DESCRIPTION OF DISCIPLINE
The Materials Science and Engineering program provides the basis for developing, improving, and understanding materials and processes for electronic, structural, and other applications. The emphasis is on fundamentals relating atomic- to microscopic-scale phenomena to materials properties and processing, including design and control of industrially important materials processes. Focus areas include electronic materials, polymers, ceramics, biomaterials, nanomaterials, structural materials, and metals and mineral processing.

http://www.seas.columbia.edu/matsci/

RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.mrs.org
http://www.asminternational.org
http://www.careereducation.columbia.edu/resources/industry/engg/materials
POSSIBLE CAREERS
Biomedical engineers develop devices and procedures that solve medical and health-related problems; do research to develop and evaluate systems and products such as artificial organs, prostheses (artificial devices that replace missing body parts), instrumentation, medical information systems, and health management and care delivery systems; design devices used in various medical procedures, imaging systems such as magnetic resonance imaging (MRI), and devices for automating insulin injections or controlling body functions.

DESCRIPTION OF DISCIPLINE
Biomedical Engineering is a discipline that advances knowledge in engineering, biology, and medicine — and improves human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice. Bioengineering/Biomedical Engineering combines engineering expertise with medical needs for the enhancement of health care. It is a branch of engineering in which knowledge and skills are developed and applied to define and solve problems in biology and medicine.

http://www.tryengineering.org
http://www.careercornerstone.org

RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.embs.org
http://www.bme.columbia.edu/pages/research/index.html
http://www.careereducation.columbia.edu/resources/industry/engg/biomed
POSSIBLE CAREERS
The Chemical Engineering degree is a passport to exciting careers in directly related industries as diverse as biochemical engineering, environmental management, and pharmaceuticals, and graduates launch careers in medicine, law, management, banking and finance, and politics. Chemical engineers can be found in industry in fields as diverse as fuels, electronics, food and consumer products, pharmaceuticals, environmental engineering, and pulp and paper.

DESCRIPTION OF DISCIPLINE
Chemical Engineering enables the production of useful and essential chemicals and materials by processes that require controlled physical, chemical, or biological transformations. The Chemical Engineer guides the passage of the product from the laboratory to the marketplace, from ideas and prototypes to functioning articles and processes, from theory to reality. This expertise is essential to production, marketing and application in areas such as pharmaceuticals, high performance materials in the automotive and aerospace industries, semiconductors in the electronics industry, paints and plastics, consumer products, petroleum refining, industrial chemicals, synthetic fibers, and bioengineering and biotechnology areas from artificial organs to biosensors.


RESEARCH
http://www.cheme.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
http://www.aiche.org/
http://www.careereducation.columbia.edu/resources/industry/engg/chem
POSSIBLE CAREERS
Civil engineers design and build buildings, bridges, dams, airports, railroads, aqueducts, offshore structures, etc. as well as airplanes, ship, automobiles, etc. They also manage construction projects that can range from a single building or bridge to entire cities. Civil engineers are also prominent in protecting the environment. With their work, they help improving the quality of life.

DESCRIPTION OF DISCIPLINE
Civil engineers are in the forefront of technology. They build buildings and bridges using the latest technologies and materials. Today we can talk about smart bridges and buildings, capable to adapt themselves to the demand conditions. Civil engineers are the leading users of sophisticated high-tech products, applying the very latest concepts in computer-aided design (CAD) during design, construction, project scheduling, and cost control.

Civil engineering is about community service, development, and improvement. It involves the conception, planning, design, construction, and operation of facilities essential to modern life, ranging from transit systems to offshore structures to space satellites.

http://www.tryengineering.org

RESEARCH
http://www.civil.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
http://www.asce.org
http://www.civil.columbia.edu/pages/research/index.html
http://www.careereducation.columbia.edu/resources/industry/engg/civil
http://www.careereducation.columbia.edu/resources/industry/engg/biomed
POSSIBLE CAREERS
Today’s computer scientists may work in a number of industries. Places you will find computer scientists include graduate and professional schools, software and technology companies, government organizations, financial institutions, consulting firms, research and development laboratories, and virtually any place where technical problem solvers are needed.

DESCRIPTION OF DISCIPLINE
Computer Science is ultimately about problem solving. The major is an integrated curriculum, partially in areas with an immediate relationship to the computer, such as programming languages, operating systems, and computer architecture, and partially in theoretical computer science and mathematics. Topic include artificial intelligence, natural language processing, computational complexity and the analysis of algorithms, computer networks, combinatorial methods, computer architecture, computer graphics, databases, mathematical models for computation, optimization, programming environments, computer security, computational biology, and spoken language processing.

http://www.cs.columbia.edu

RESEARCH
http://www.cs.columbia.edu/research/areas
http://portal.seas.columbia.edu/research

RESOURCES
http://www.acm.org
http://xrds.acm.org/
http://www.cs.columbia.edu/studentlife/lifeaftercscu
http://computingcareers.acm.org/
POSSIBLE CAREERS
Computer engineers work in fields of digital and computer design, CAD, software, embedded systems (common in consumer electronics), computer networks, and hardware/software system design.

DESCRIPTION OF DISCIPLINE
Computer engineering is currently the largest inter-departmental major within Columbia Engineering. It is co-run by CS and EE departments, as a separate major, and covers topics at the boundary between the two disciplines. Computer engineers analyze and develop computer systems, including both hardware and software. Some of the key areas are: computer design (i.e. computer architecture); embedded systems (i.e. dedicated hardware/software for cell phones, automobiles, robots, games, and aerospace); digital and VLSI circuit design; computer networks; design automation (i.e. CAD); low-power design; and parallel and distributed systems including architectures, programming and compilers).

The Computer Engineering program combines some of the most exciting topics in both electrical engineering and computer science. Majors develop strong skills in both programming and circuit design.

www.compeng.columbia.edu

RESEARCH
http://www.compeng.columbia.edu/
http://portal.seas.columbia.edu/research

RESOURCES
http://www.acm.org
http://www.ieee.org
http://computingcareers.acm.org/
POSSIBLE CAREERS
Work includes research and design, operation of pollution control facilities, government regulatory agencies, program management. Employers are in private consulting engineering firms, universities, private research firms, testing laboratories, government agencies or corporations and private businesses.

DESCRIPTION OF DISCIPLINE
Earth and Environmental engineers strive to develop effective solutions to problems such as the rapid consumption of our natural resources, extensive waste production, environmental degradation, threats to human health, and climate change. Columbia’s program focuses on three broad themes:

- Water resources and climate risks
- Sustainable energy and materials
- Environmental health engineering

http://www.eee.columbia.edu

RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.aacee.net
http://www.careereducation.columbia.edu/resources/industry/engg/earthenv
POSSIBLE CAREERS
Electrical engineers work with technology related to electronics, photonics, and power systems in a wide range of industries, including aerospace, bioengineering, computers, education, energy, manufacturing, semiconductors, services, telecommunications, and transportation.

DESCRIPTION OF DISCIPLINE
Electrical engineering is a broad discipline that studies the application of electricity and magnetism to the manipulation of information and energy. Specialties focus at many different levels, from physical devices to complex circuits to entire systems. Electrical engineers have made remarkable contributions to the world in recent times, enabling modern computing and communications (PCs, TVs, smartphones, and the Internet) and significantly improving a wide range of key products, such as cars, airplanes, appliances, medical equipment, robots, and games.

http://www.tryengineering.org
http://www.careercornerstone.org

RESEARCH
http://www.ee.columbia.edu
http://portal.seas.columbia.edu/research

RESOURCES
http://www.ieee.org
http://www.careereducation.columbia.edu/resources/industry/engg/ee
POSSIBLE CAREERS
Analysts, associates, consultants, strategists in organizations across sectors (e.g., financial services, consulting, manufacturing, technology). Our graduates pursue a variety of positions in various sections including financial services, professional/consulting services, information/technology services, manufacturing, business analytics, social networking, not-for-profit, government and academia. They are viewed as entrepreneurs, leaders and problem solvers in various organizations, taking on roles such as analysis, associates, consultants and strategists.

DESCRIPTION OF DISCIPLINE
Industrial Engineering is the branch of the engineering profession that is concerned with the design, analysis, and control of production and service operations and systems. Industrial engineers are broadly concerned with productivity and all of the technical problems of production management and control. They may be found working in every kind of organization: manufacturing, distribution, transportation, mercantile, and service. Their responsibilities range from the design of unit operations to that of controlling complete production and service systems. Their jobs involve the integration of the physical, financial, economic, and human components of such systems to attain specified goals.

http://ieor.columbia.edu/pages/dptoverview

RESEARCH
http://ieor.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
Institute of Industrial Engineers (http://www.iienet.org)
INFORMS (http://www.informs.org)
Industrial Engineering Overview (http://www.careercornerstone.org/pdf/tryengineering/indengineer.pdf)
POSSIBLE CAREERS
Analysts, associates, consultants, strategists in organizations across sectors (e.g., financial services, consulting, manufacturing, technology). Our graduates pursue a variety of positions in various sections including financial services, professional/consulting services, information/technology services, manufacturing, business analytics, social networking, not-for-profit, government and academia. They are viewed as entrepreneurs, leaders and problem solvers in various organizations, taking on roles such as analysis, associates, consultants and strategists.

DESCRIPTION OF DISCIPLINE
Operations Research is an applied science, and is concerned with quantitative decision problems, generally involving the allocation and control of limited resources. Such problems arise, for example, in the operations of industrial firms, financial institutions, health care organizations, transportation systems, energy and resources, and government. The operations research analyst develops and uses mathematical and statistical models to help solve these decision problems.

http://ieor.columbia.edu/pages/dptoverview

RESEARCH
http://ieor.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
Institute of Industrial Engineers (http://www.iienet.org)
INFORMS (http://www.informs.org)
POSSIBLE CAREERS
Analysts, associates, consultants, strategists in organizations across sectors (e.g., financial services, consulting, manufacturing, technology). Our graduates pursue a variety of positions in various sections including financial services, professional/consulting services, information/technology services, manufacturing, business analytics, social networking, not-for-profit, government and academia. They are viewed as entrepreneurs, leaders and problem solvers in various organizations, taking on roles such as analysis, associates, consultants and strategists.

DESCRIPTION OF DISCIPLINE
Management science is an interdisciplinary branch of applied mathematics, engineering and sciences that uses various scientific research-based principles, strategies, and analytical methods including mathematical modeling, statistics and algorithms to improve an organization’s ability to enact rational and meaningful management decisions. It provides a rigorous exposure to deterministic optimization and stochastic modeling, a basic coverage of applications in the areas of operations engineering and management, and an in-depth coverage of applications in the areas of the selected concentration.

http://ieor.columbia.edu/pages/dptoverview

RESEARCH
http://ieor.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
Institute of Industrial Engineers (http://www.iienet.org)
INFORMS (http://www.informs.org)
Columbia University Center for Career Education Resources: Industrial Engineering/Operations Research (http://www.careereducation.columbia.edu/resources/industry/engineering/)
POSSIBLE CAREERS
Analysts, associates, consultants, strategists in organizations across sectors (e.g., financial services, consulting, manufacturing, technology). Our graduates pursue a variety of positions in various sections including financial services, professional/consulting services, information/technology services, manufacturing, business analytics, social networking, not-for-profit, government and academia. They are viewed as entrepreneurs, leaders and problem solvers in various organizations, taking on roles such as analysis, associates, consultants and strategists.

DESCRIPTION OF DISCIPLINE
Financial Engineering is a multidisciplinary field that requests familiarity with financial theory, the methods of engineering, the tools of mathematics and the practice of programming. Undergraduate and graduate studies in Financial Engineering provide students training in the application of engineering methodologies and quantitative methods to finance.

http://informs.org/About-INFORMS/About-Operations-Research

RESEARCH
http://ieor.columbia.edu/pages/research/index.html
http://portal.seas.columbia.edu/research

RESOURCES
Institute of Industrial Engineers (http://www.iienet.org)
INFORMS (http://www.informs.org)
International Association of Financial Engineers (http://iafe.org)
eFinancialCareers (http://www.efinancialcareers.com/)
Columbia University Center for Career Education Resources: Industrial Engineering/Operations Research
(http://www.careereducation.columbia.edu/resources/industry/engg/ior)
POSSIBLE CAREERS
Mechanical Engineers pioneered and continue to make technological advances in a diverse array of fields including automobiles, airplanes, spacecraft, power generation systems, computer-aided engineering, heating, ventilation and air conditioning (HVAC), robotics, and bioengineering, among many others. In addition, Mechanical Engineers are currently pioneering cutting edge technologies that include sustainable power systems tailored to economic development, alternative-fuel vehicles, green energy for HVAC, micro- and nano-technology and mechanisms, sensors, advanced materials and composite materials, automation, control and robotics, medical robotics, nano-medicine, and novel delivery systems for pharmaceuticals, to name but a few.

DESCRIPTION OF DISCIPLINE
Mechanical Engineering is grounded in the fundamental fields of study of mechanics, mathematics and physics, thermodynamics and heat transfer, mechanics of solids and fluids, control theory, manufacturing and design, among other topics. They apply these principles to develop processes, devices and systems that address societal needs and enhance and extend quality of life and the environment. In addition to inventing new technologies, Mechanical Engineers optimize existing technologies to achieve greater efficiency and sustainability. Because Mechanical Engineering is the broadest engineering discipline, it is an ideal incubator for cross-disciplinary studies.

http://www.columbia.edu/cu/mechanical

RESEARCH
http://portal.seas.columbia.edu/research

RESOURCES
http://www.asme.org/
http://www.careereducation.columbia.edu/resources/industry/engg/meche
OTHER USEFUL RESOURCES FOR MAJOR EXPLORATION:

• Departmental Faculty and Administrators
  (see bulletin and departmental websites for details)

• Leora Brovman, Assistant Dean for Undergraduate Student Affairs and Global Programs: 254 Mudd, lb2258@columbia.edu

• CSA – SEAS Departmental Liaisons:
  http://www.studentaffairs.columbia.edu/csa/academic_depts

• Professional-level Courses:
  http://bulletin.engineering.columbia.edu/professional-level-courses-first-and-second-year-students

• The Art of Engineering (required of all first-year engineering students):
  http://bulletin.engineering.columbia.edu/technical-course-requirements

• Engineering library:
  http://library.columbia.edu/content/libraryweb/indiv/eng.html

• Center for Career Education:
  http://www.careereducation.columbia.edu/ and
  http://www.careereducation.columbia.edu/resources/industry/engg/alleng

• Some material for possible careers and description of discipline was drawn from the following website:
  http://www.tryengineering.org